Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Infect Dis ; 2022 Jun 19.
Article in English | MEDLINE | ID: covidwho-2229192

ABSTRACT

BACKGROUND: The ongoing COVID-19 pandemic significantly burdens hospitals and other healthcare facilities. Therefore, understanding the entry and transmission of SARS-CoV-2 is critical for effective prevention and preparedness measures. We performed surveillance and analysis of testing and transmission of SARS-CoV-2 infections in a tertiary-care hospital in Germany during the second and third pandemic waves in fall/winter 2020. METHODS: Between calendar weeks 41/2020 and 1/2021 40% of all positive patient and staff samples (284 total) were subjected to full-length viral genome sequencing. Clusters were defined based on similar genotypes indicating common sources of infection. We integrated phylogenetic, spatial, and temporal metadata to detect nosocomial infections and outbreaks, uncover transmission chains, and evaluate containment measures' effectiveness. RESULTS: Epidemiologic data and contact tracing readily recognize most healthcare-associated patient infections. However, sequencing data reveal that temporally preceding index cases and transmission routes can be missed using epidemiologic methods, resulting in delayed interventions and serially linked outbreaks being counted as independent events. While hospital-associated transmissions were significantly elevated at a moderate rate of community transmission during the second wave, systematic testing and high vaccination rates among staff have led to a substantial decrease in healthcare-associated infections at the end of the second/beginning of the third wave despite high community transmissions. CONCLUSIONS: While epidemiologic analysis is critical for immediate containment of healthcare-associated SARS-CoV-2 outbreaks, integration of genomic surveillance revealed weaknesses in identifying staff contacts. Our study underscores the importance of high testing frequency and genomic surveillance to detect, contain and prevent SARS-CoV-2-associated infections in healthcare settings.

2.
Antimicrob Resist Infect Control ; 11(1): 88, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1902413

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) causes community-acquired respiratory tract infections during winter. However, outbreaks in hospitals also occur repeatedly. In particular, patients with hematologic malignancies are at an increased risk for a severe and potentially fatal course of RSV infection. Here we present the investigation of an RSV outbreak in a hematology ward for adults following the ORION statement. METHODS: An epidemiologic and molecular outbreak analysis was performed. We developed and employed a minimal oligonucleotide probe set in target capture probe sequencing that allows cost-effective RSV-A or -B capturing to reconstruct RSV genomes from clinical samples. RESULTS: Four adult patients were involved in the outbreak caused by RSV-B in March 2019. The enforcement of the pre-existing infection control measures by effective training of hospital staff contributed to a successful containment. PCR-based RSV screening on the ward enabled early detection of new cases and rapid isolation measures. The molecular analysis demonstrated that the outbreak sequences were highly related and distinct to other RSV-B strains circulating at the same time. CONCLUSIONS: A multimodal infection control concept is essential for the timely detection and control of RSV outbreaks in patients with hematological disease. Among other measures, preventive screening for respiratory viruses is recommended. Furthermore, the integration of conventional and molecular epidemiology, such as whole-genome sequencing and variant calling, significantly contributes to the understanding of transmission pathways. Based on this, appropriate conclusions can be drawn for targeted prevention measures that have prepared us for the COVID-19 pandemic beyond the RSV approach described here.


Subject(s)
COVID-19 , Cross Infection , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Adult , Cross Infection/prevention & control , Disease Outbreaks , Humans , Pandemics , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics
3.
Int J Hyg Environ Health ; 240: 113928, 2022 03.
Article in English | MEDLINE | ID: covidwho-1648655

ABSTRACT

We describe two outbreaks of SARS-CoV-2 in daycare centers in the metropolitan area of Hamburg, Germany. The outbreaks occurred in rapid chronological succession, in neighborhoods with a very similar sociodemographic structure, thus allowing for cross-comparison of these events. We combined classical and molecular epidemiologic investigation methods to study infection entry, spread within the facilities, and subsequent transmission of infections to households. Epidemiologic and molecular evidence suggests a superspreading event with a non-variant of concern (non-VOC) SARS CoV-2 strain at the root of the first outbreak. The second outbreak involved two childcare facilities experiencing infection activity with the variant of concern (VOC) B.1.1.7 (Alpha). We show that the index cases in all outbreaks had been childcare workers, and that children contributed substantially to secondary transmission of SARS-CoV-2 infection from childcare facilities to households. The frequency of secondary transmissions in households originating from B.1.1.7-infected children was increased compared to children with non-VOC infections. Self-reported symptoms, particularly cough and rhinitis, occurred more frequently in B.1.1.7-infected children. Especially in light of the rapidly spreading VOC B.1.617.2 (Delta), our data underline the notion that rigorous SARS-CoV-2 testing in combination with screening of contacts regardless of symptoms is an important measure to prevent SARS-CoV-2 infection of unvaccinated individuals in daycare centers and associated households.


Subject(s)
COVID-19 , Child Day Care Centers , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/virology , COVID-19 Testing , Child , Disease Outbreaks , Germany/epidemiology , Humans
4.
Clin Microbiol Infect ; 27(1): 130.e5-130.e8, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-996792

ABSTRACT

OBJECTIVES: Investigation whether in depth characterization of virus variant patterns can be used for epidemiological analysis of the first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection clusters in Hamburg, Germany. METHODS: Metagenomic RNA-sequencing and amplicon-sequencing and subsequent variant calling in 25 respiratory samples from SARS-CoV-2 infected patients involved in the earliest infection clusters in Hamburg. RESULTS: Amplikon sequencing and cluster analyses of these SARS-CoV-2 sequences allowed the identification of the first infection cluster and five non-related infection clusters occurring at the beginning of the viral entry of SARS-CoV-2 in the Hamburg metropolitan region. Viral genomics together with epidemiological analyses revealed that the index patient acquired the infection in northern Italy and transmitted it to two out of 134 contacts. Single nucleotide polymorphisms clearly distinguished the virus variants of the index and other clusters and allowed us to track in which sequences worldwide these mutations were first described. Minor variant analyses identified the transmission of intra-host variants in the index cluster and household clusters. CONCLUSIONS: SARS-CoV-2 variant tracing allows the identification of infection clusters and the follow up of infection chains occurring in the population. Furthermore, the follow up of minor viral variants in infection clusters can provide further resolution on transmission events indistinguishable at a consensus sequence level.


Subject(s)
COVID-19 Vaccines/genetics , COVID-19/epidemiology , COVID-19/transmission , Genome, Viral , Pandemics/prevention & control , SARS-CoV-2/genetics , Adult , COVID-19/virology , COVID-19 Vaccines/biosynthesis , COVID-19 Vaccines/immunology , Contact Tracing/statistics & numerical data , Evolution, Molecular , Female , Germany/epidemiology , High-Throughput Nucleotide Sequencing , Humans , Italy/epidemiology , Male , Multigene Family , Phylogeny , Polymorphism, Single Nucleotide , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Travel
5.
EMBO Mol Med ; 12(12): e13296, 2020 12 07.
Article in English | MEDLINE | ID: covidwho-809636

ABSTRACT

We describe a multifactorial investigation of a SARS-CoV-2 outbreak in a large meat processing complex in Germany. Infection event timing, spatial, climate and ventilation conditions in the processing plant, sharing of living quarters and transport, and viral genome sequences were analyzed. Our results suggest that a single index case transmitted SARS-CoV-2 to co-workers over distances of more than 8 m, within a confined work area in which air is constantly recirculated and cooled. Viral genome sequencing shows that all cases share a set of mutations representing a novel sub-branch in the SARS-CoV-2 C20 clade. We identified the same set of mutations in samples collected in the time period between this initial infection cluster and a subsequent outbreak within the same factory, with the largest number of confirmed SARS-CoV-2 cases in a German meat processing facility reported so far. Our results indicate climate conditions, fresh air exchange rates, and airflow as factors that can promote efficient spread of SARS-CoV-2 via long distances and provide insights into possible requirements for pandemic mitigation strategies in industrial workplace settings.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks , COVID-19/diagnosis , COVID-19/transmission , COVID-19/virology , Food Industry , Genotype , Germany/epidemiology , Humans , Open Reading Frames/genetics , Physical Distancing , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Ventilation , Workplace
6.
Microbiol Resour Announc ; 9(23)2020 Jun 04.
Article in English | MEDLINE | ID: covidwho-538004

ABSTRACT

Here, we describe the complete genome sequence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain isolated from an oropharyngeal swab sample from a female patient with COVID-19 who was infected in Hamburg, northern Germany.

SELECTION OF CITATIONS
SEARCH DETAIL